Applied Bioinformatics Group


A   A   A
Sections
Home > Publications > A computational platform for high-throughput analysis of RNA sequences and modifications by mass spectrometry

Skip to content. | Skip to navigation

Document Actions

Samuel Wein, Byron Andrews, Timo Sachsenberg, Helena Santos-Rosa, Oliver Kohlbacher, Tony Kouzarides, Benjamin A Garcia, and Hendrik Weisser (2018)

A computational platform for high-throughput analysis of RNA sequences and modifications by mass spectrometry

bioRxiv.

The field of epitranscriptomics is growing in importance, with chemical modification of RNA being associated with a wide variety of biological phenomena. A pivotal challenge in this area is the identification of modified RNA residues within their sequence contexts. Next-generation sequencing approaches are generally unable to capture modifications, although workarounds for some epigenetic marks exist. Mass spectrometry (MS) offers a comprehensive solution by using analogous approaches to shotgun proteomics. However, software support for the analysis of RNA MS data is inadequate at present and does not allow high-throughput processing. In particular, existing software solutions lack the raw performance and statistical grounding to efficiently handle the large variety of modifications present on RNA. We present a free and open-source database search engine for RNA MS data, called NucleicAcidSearchEngine (NASE), that addresses these shortcomings. We demonstrate the capability of NASE to reliably identify a wide range of modified RNA sequences in three original datasets of varying complexity. In a human tRNA sample, we characterize over 20 different modification types simultaneously and find many cases of incomplete modification.

10.1101/501668